Mesin and Merletti: Stimulation Current Distribution in planar volume conductor

ثبت نشده
چکیده

 Abstract— This study analytically addresses the problem of neuromuscular electrical stimulation for a planar, multi-layer, anisotropic model of a physiological tissue (referred to as volume conductor). Both conductivity and permittivity of the volume conductor are considered, including dispersive properties. The analytical solution is obtained in the two dimensional Fourier transform domain, transforming in the planes parallel to the volume conductor surface. The model is efficient in terms of computational cost, as the solution is analytical (only numerical Fourier inversion is needed). It provides the current distribution in a physiological tissue induced by an electrical current delivered at the skin surface. Three representative examples of application of the model are considered. 1) The simulation of stimulation artefact during transcutaneous electrical stimulation and EMG detection. Only the effect of the volume conductor is considered, neglecting the other sources of artefact (such as the capacitive coupling between the stimulating and recording electrodes). 2) The simulation of the electrical current distribution within the muscle, and the low pass filter effect of the volume conductor on sinusoidal stimulation currents with different stimulation frequencies. 3) The estimation of the amplitude modulated current distribution within the muscle for interferential stimulation. The model is devoted to the simulation of neuromuscular stimulation, but the same method could be applied in other fields in which the estimation of the electrical current distribution in a medium induced by the injection of a current from the boundary of the medium is of interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Politecnico di Torino

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters. 1  Abstract— This study analytically addresses the problem of neuromuscular electrical stimulation for a planar, multi-layer, anisotropic model of a ...

متن کامل

Separation of propagating and non propagating components in surface EMG

Surface electromyogram (EMG) detected by electrode arrays along the muscle fibre direction can be approximated by the sum of propagating and non propagating components. A technique to separate propagating and non propagating components in surface EMG signals is developed. The first step is an adaptive filter, which allows obtaining an estimation of the delay between signals detected at differen...

متن کامل

[Article] Simulation of Surface EMG Signals for a Multi-layer Volume Conductor with Triangular Model of the Muscle Tissue

This study analytically describes surface electromyogram (sEMG) signals generated by a model of a triangular muscle, i.e., a muscle with fibres arranged in a fan shape. Examples of triangular muscles in the human body are the deltoid, the pectoralis major, the trapezius, the adductor pollicis. A model of triangular muscle is proposed. It is a sector of a cylindrical volume conductor (with the f...

متن کامل

Surface EMG model with variable conductivity

 Abstract— A non-space invariant model of volume conductor for surface EMG signal generation is analytically investigated. The volume conductor comprises planar layers representing the muscle and subcutaneous tissues. The muscle tissue is homogeneous and anisotropic while the subcutaneous layer is inhomogeneous and isotropic. The inhomogeneity is modeled as a smooth variation in conductivity a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012